Probability models for computer science / (Record no. 155747)

MARC details
000 -LEADER
fixed length control field 04494cam a22002174a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20160322165201.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 010328s2002 cau b 001 0 eng
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9788131203071
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 519.2
Item number ROS
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Ross, Sheldon M.
9 (RLIN) 248
245 10 - TITLE STATEMENT
Title Probability models for computer science /
Statement of responsibility, etc. Sheldon M. Ross.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. gURGAN:
Name of publisher, distributor, etc. Academic Press,
Date of publication, distribution, etc. c2009.
300 ## - PHYSICAL DESCRIPTION
Extent xii, 288 p. ;
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: 1 Probability 1 -- 1.1 Axioms of Probability 1 -- 1.2 Conditional Probability and Independence 1 -- 1.3 Random Variables 2 -- 1.4 Expected Value and Variance 5 -- 1.4.1 Expected Value and Variance of Sums of Random Variables 7 -- 1.5 Moment-Generating Functions and Laplace Transforms 17 -- 1.6 Conditional Expectation 20 -- 1.7 Exponential Random Variables 32 -- 1.8 Limit Theorems 41 -- 1.8.1 Stopping Times and Wald's Equation 42 -- Exercises 43 -- 2 Some Examples 49 -- 2.1 A Random Graph 49 -- 2.2 The Quicksort and Find Algorithms 55 -- 2.2.1 The Find Algorithm 58 -- 2.3 A Self-Organizing List Model 61 -- 2.4 Random Permutations 62 -- 2.4.1 Inversions 66 -- 2.4.2 Increasing Subsequences 69 -- Exercises 71 -- 3 Probability Bounds, Approximations, -- and Computations 75 -- 3.1 'ail Probability Inequalities 75 -- 3.1.1 Markov's Inequality 75 -- 3.1.2 Chernoff Bounds 76 -- 3.1.3 Jensen's Inequality 79 -- 3.2 The Second Moment and the Conditional -- Expectation Inequality 79 -- 3.3 Probability Bounds via the Importance Sampling Identity 87 -- 3.4 Poisson Random Variables and the Poisson Paradigm 89 -- 3.5 Compound Poisson Random Variables 94 -- 3.5.1 A Second Representation when the Component -- Distribution Is Discrete 95 -- 3.5.2 A Compound Poisson identity 96 -- Exercises 100 -- 4 Markov Chains 103 -- 4.1 Introduction 103 -- 4.2 Chapman-Kolmogorov Equations 105 -- 4.3 Classification of States 106 -- 4.4 Limiting and Stationary Probabilities 115 -- 4.5 Some Applications 121 -- 4.5.1 Models for Algorithmic Efficiency 121 -- 4.5.2 Using a Random Walk to Analyze a Probabilistic Algorithm -- for the Satisfiability Problem 126 -- 4.6 Time-Reversible Markov Chains 131 -- 4.7 Markov Chain Monte Carlo Methods 142 -- Exercises 147 -- 5 The Probabilistic Method 151 -- 5.1 Introduction 151 -- 5.2 Using Probability To Prove Existence 151 -- 5.3 Obtaining Bounds fiom Expectations 153 -- 5.4 The Maximum Weighted Independent -- Set Problem: A Bound and a Random Algorithm 156 -- 5.5 The Set-Covering Problem 161 -- 5.6 Antichains 163 -- 5.7 The Lovasz Local Lemma 164 -- 5.8 A Random Algorithm for Finding the Minimal -- Cut in a Graph 169 -- Exercises 171 -- 6 Martingales 175 -- 6.1 Definitions and Examples 175 -- 6.2 The Martingale Stopping Theorem 177 -- 6.3 The Hoeffding-Azuma Inequality 189 -- 6.4 Submartingales 192 -- Exercises 194 -- 7 Poisson Processes 199 -- 7.1 The Nonstationary Poisson Process 199 -- 7.2 The Stationary Poisson Process 203 -- 7.3 Some Poisson Process Computations 205 -- 7.4 Classifying the Events of a Nonstationary Poisson Process 211 -- 7.5 Conditional Distribution of the Arrival Times 215 -- Exercises 217 -- 8 Queueing Theory 221 -- 8.1 Introduction 221 -- 8.2 Preliminaries 222 -- 8.2.1 Cost Equations 222 -- 8.2.2 Steady-State Probabilities 224 -- 8.3 Exponential Models 226 -- 8.3.1 A Single-Server Exponential Queueing System 226 -- 8.4 Birth-and-Death Exponential Queueing Systems 230 -- 8.5 The Backwards Approach in Exponential Queues 238 -- 8.6 A Closed Queueing Network 239 -- 8.7 An Open Queueing Network 243 -- 8.8 The M/G/I Queue 248 -- 8.8.1 Preliminaries: Work and Another Cost Identity 248 -- 8.8.2 Application of Work to M/G/1 249 -- 8.8.3 Busy and idle Periods 253 -- 8.8.4 Relating the Variances of Waiting -- Times and Number in System 254 -- 8.9 Priority Queues 255 -- Exercises 258 -- 9 Simulation 261 -- 9.1 Monte Carlo Simulation 261 -- 9.2 Generating Discrete Random Variables 263 -- 9.3 Generating Continuous Random Variables: -- The Inverse Transform Approach 266 -- 9.4 The Rejection Method 268 -- 9,5 Variance Reduction 272 -- 9.5.1 Antithetic Variables 272 -- 9.5.2 Importance Sampling 275 -- 9.5.3 Variance Reduction by Conditional Expectation 279 -- Exercises 280 -- References 283 -- Index 285.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Probabilities.
9 (RLIN) 251
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computer science
General subdivision Mathematics.
9 (RLIN) 551
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://www.loc.gov/catdir/description/els031/2001089413.html">http://www.loc.gov/catdir/description/els031/2001089413.html</a>
856 41 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://www.loc.gov/catdir/toc/fy02/2001089413.html">http://www.loc.gov/catdir/toc/fy02/2001089413.html</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
        Department of Computer Science Department of Computer Science General Stacks 01/31/2014   519.2 ROS MCS05189 01/31/2014 01/31/2014 Books

University Library
Cochin University of Science and Technology
Kochi-682 022, Kerala, India